Theoretical Investigations of the Defect Structure and the g Factors of a Tetragonal Ni³⁺ Center in PbTiO₃

Shao-Yi Wu^{a,b}, Hua-Ming Zhang^a, Guang-Duo Lu^a, and Jin-Song Yao^a

^a Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China

b International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110016, P. R. China

Reprint requests to S.-Y. W.; E-mail: shaoyi_wu@163.com

Z. Naturforsch. **62a**, 338 – 342 (2007); received November 22, 2006

The defect structure and the anisotropic g factors of a tetragonal Ni³⁺ center in PbTiO₃ are theoretically investigated from improved perturbation formulas of the g factors for a $3d^7$ ion with low spin S=1/2 in tetragonally elongated octahedra, established in this work. Based on the studies, the distance between the impurity Ni³⁺ and the center of the oxygen octahedron is found to be about 0.14 Å, which is smaller than that (≈ 0.3 Å) for the host Ti⁴⁺ site due to the inward shift (≈ 0.16 Å) towards the center of the oxygen octahedron. The theoretical g factors based on the above defect structure agree well with the observed values.

Key words: Defect Structures; Electron Paramagnetic Resonance; Crystal-Fields and Spin Hamiltonian; Ni³⁺; PbTiO₃.